Is the Regge Calculus a consistent approximation to General Relativity?
نویسنده
چکیده
We will ask the question of whether or not the Regge calculus (and two related simplicial formulations) is a consistent approximation to General Relativity. Our criteria will be based on the behaviour of residual errors in the discrete equations when evaluated on solutions of the Einstein equations. We will show that for generic simplicial lattices the residual errors can not be used to distinguish metrics which are solutions of Einstein’s equations from those that are not. We will conclude that either the Regge calculus is an inconsistent approximation to General Relativity or that it is incorrect to use residual errors in the discrete equations as a criteria to judge the discrete equations.
منابع مشابه
Regge Calculus as a Fourth Order Method in Numerical Relativity
The convergence properties of numerical Regge calculus as an approximation to continuum vacuum General Relativity is studied, both analytically and numerically. The Regge equations are evaluated on continuum spacetimes by assigning squared geodesic distances in the continuum manifold to the squared edge lengths in the simplicial manifold. It is found analytically that, individually, the Regge e...
متن کاملConsistent Discretization and Canonical Classical and Quantum Regge Calculus
We apply the “consistent discretization” technique to the Regge action for (Euclidean and Lorentzian) general relativity in arbitrary number of dimensions. The result is a well defined canonical theory that is free of constraints and where the dynamics is implemented as a canonical transformation. In the Lorentzian case, the framework appears to be naturally free of the “spikes” that plague tra...
متن کاملFirst Order Regge
A first order form of Regge calculus is defined in the spirit of Palatini’s action for general relativity. The extra independent variables are the interior dihedral angles of a simplex, with conjugate variables the areas of the triangles. There is a discussion of the extent to which these areas can be used to parameterise the space of edge lengths of a simplex. Regge’s equations of motion for R...
متن کاملFirst-order Regge Calculus
A rst order form of Regge calculus is de ned in the spirit of Palatini's action for general relativity. The extra independent variables are the interior dihedral angles of a simplex, with conjugate variables the areas of the triangles. There is a discussion of the extent to which these areas can be used to parameterise the space of edge lengths of a simplex. hep-th/9404124 Regge's equations of ...
متن کاملA left-handed simplicial action for euclidean general relativity
An action for simplicial euclidean general relativity involving only left-handed fields is presented. The simplicial theory is shown to converge to continuum general relativity in the Plebanski formulation as the simplicial complex is refined. This contrasts with the Regge model for which M. Miller and Brewin have shown that the full field equations are much more restrictive than Einstein’s in ...
متن کامل